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Uniaxial tensile tests were performed on the newest type of Meissner rheometer with an
ABS (acrylonitrile-butadiene-styrene) material. Tests were conducted for constant strain
rates varying from 0.01 to 1 (1/s), at the temperatures ranging from 150 to 200 ◦C. Based on
the experimental data, a new model was proposed, in which, strain hardening, strain rate
sensitivity, temperature changes and the variation in the hardening index could be taken
into consideration. In this new model, a new parameter, w, was introduced, which
represents the variation in the hardening index. The proposed model can approximate the
experimental data of the uniaxial tensile test quite well. Two existing models were also
employed to approximate the material behavior, however, both of them exhibited the poor
accuracy. Finally, a simple stretch deformation was simulated employing the three different
models, and the differences in the final thickness and shape were confirmed. C© 1999
Kluwer Academic Publishers

1. Introduction
In the last few years, research in the simulation of ther-
moforming and blow molding processes has been ac-
tively conducted. One of the key issues in this research
field is to develop an accurate material model. Vari-
ous constitutive equations have been employed to sim-
ulate the processes, including hyperelastic [1, 2], visco-
elastic [3, 4] and viscoplastic [5–7] models. Since high
speed elongational deformation is the dominant defor-
mation mode in the thermoforming and blow molding
processes, a suitable constitutive equation should be es-
tablished by investigating the elongational deformation
behavior of the material at a high strain rate. However,
little research has been performed under such condi-
tions. In particular, there have been almost no detailed
studies on the combined effects of strain hardening,
strain rate sensitivity, and temperature changes under
the conditions at which thermoforming and blow mold-
ing is conducted. Therefore, the aim of this work is to
perform suitable material tests, with the strain, strain
rate and temperature ranges setting to be close to the
real processes, and to propose an accurate and simple
material model to describe the material’s elongational
deformation behavior.
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On choosing a suitable test machine, we found that
the newest type of Meissner elongational rheometer [8]
is more advantageous for performing such a test than
the conventional machines, with which the relations be-
tween the true stress and the true strain can be obtained
under constant true strain rates at different tempera-
tures. Using this rheometer, we conducted the tensile
tests for the ABS material under the conditions at which
thermoforming is conducted. Based on the test data, a
new accurate material model is proposed, in which the
flow stress is represented as a function of strain harden-
ing, strain rate sensitivity and temperature. In order to
clarify the improvement of the new model, comparison
of the precision with the two existing models was also
performed. Finally, a simple stretch deformation was
simulated employing the three different models, and
the differences in the final thickness and shape were
confirmed.

2. Experimental instrument
The uniaxial tensile test has been widely used to obtain
mechanical properties of polymers. However, a conven-
tional tensile test machine cannot provide sufficient data
for simulation of the thermoforming process, which is
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Figure 1 Kernel part of the newest type of Meissner rheometer.

performed at high temperature near the melting point
and under a high strain rate (more than 1 (1/s)). This is
mainly due to the following three reasons. First, when
the temperature is near the melting point, the polymer
is susceptible to the clamping force, and the material
in the clamping zone can even be squeezed or broken
before any stretching is conducted. Second, most of
the conventional testing machines operate with a con-
stant increase of the specimen length with time, and the
true strain rate changes with the stretching. Therefore,
it is difficult to evaluate the strain rate effect correctly.
Third, the investigation of polymer’s behavior at high
strain rate which is a very important characteristic of
the thermoforming process is quite difficult with a con-
ventional testing machine. These problems can be over-
come by using the newest type of Meissner elongational
rheometer equipped with a revised rotary clamp. Fig. 1
shows the kernel part of this rheometer [8]. Each clamp
has an upper and a lower belt fixture made of titanium.
These fixtures are equipped with conveyor belts made
of thin metal bands. The belt has a rough surface formed
by deep drawing. This roughness causes perfect stick-
ing of the polymer specimen to the metal belt and leads
to an excellent transfer of the velocity from the belt to
the specimen. After inserting a polymer specimen into
the rheometer, the specimen between the two clamps is
supported by a cushion of inert gas that is provided by
pressing a gas stream through a metal frit located on
top of the specimen support table. The adequate, con-
stant gas pressure can be properly adjusted to ensure
a proper support of the specimen without blowing it
away or letting it stick to the surface of the frit. The left
and right rotary clamps have a fixed distance between
them and rotate in the opposite directions. As a result,
the specimen is transported out of the zone such that
the material located between the rotary clamps is elon-
gated homogeneously, and thus if the speed of rotation
of the clamps is kept constant, the true strain rate can
be constant. The relations between the true stress and
the true strain can be measured for the constant true
strain rates ranging from 0.001 to 1 (1/s) at the differ-
ent temperatures. The maximum true strain is 7 and the
temperature can be precisely controlled up to 300◦C
(±0.2 ◦C).

To prepare the isotropic specimens, a hot press is
used, and the well-dried pellet is formed into flat sheets
of 1 mm thickness. After cooling, the flat sheets are cut
into strips with the dimensions of 20× 60× 1 mm.

Assuming the deformation of the specimen is ho-
mogenous, tensile stressσ (t) at timet can be given by:

σ (t) = F(t)/A(t) (1)

Here, F(t) is tensile force andA(t) is the area of the
cross section of the polymer specimen at timet .

For a constant tensile true strain rate ˙ε, we can sim-
ply find the relation betweenA(t) and the initial area
of cross sectionA0, assuming that the polymer keeps
constant volume during deformation:

A(t) = A0 exp(−ε̇t) (2)

Therefore the tensile true stressσ (t) can be given as:

σ (t) = F(t) exp(ε̇t)/A0 (3)

Because the deformation of the specimen can be af-
fected by the preparation of the sheet and sometimes
is not homogeneous due to the improper setting of the
specimen between the clamps, it is necessary to confirm
the deformed shape of the specimen. This can be mon-
itored with a video camera system through a window
inlaid in the upper wall of the oven. The deformation
images of ABS material taken by the video camera un-
der the constant strain rate of 0.1 (1/s) at the temperature
of 150◦C, are shown in Fig. 2, in which homogenous
extension can be observed.

3. Experimental results
The tensile tests were conducted for the ABS (acryloni-
trile-butadiene-styrene) material SE-100 provided by
Denki Kagaku Kogyo Co. Ltd., at the strain rates rang-
ing from 0.01 to 1 (1/s) and the temperatures varying
from 150 to 200◦C, which are the expected deforma-
tion ranges in the actual thermoforming process. Be-
cause the qualitative tendencies of the strain and strain
rate effects on the stress are similar at different temper-
atures, the results obtained at 170◦C are analyzed as an
example. Fig. 3 shows the true stressσ vs true strainε
relations obtained under different constant strain rates
for 170◦C. Since the true stressσ increases with the
true strainε almost linearly in a log-log plot, it might
be reasonable to approximate the strain hardening re-
lation by following equation:

σ = kεn (4)

The slopes of the straight lines (n in Equation 4) shown
in Fig. 3 and the approximation correlation coefficients
are listed in Table I. Because the average value of the
correlation coefficients is equal to 0.99642, which is
quite close to 1, we can say that the test data under a
constant strain rate can be properly approximated by
Equation 4. Table I shows that when the strain rate
increases from 0.01 to 1, the slopen increases from
0.381 to 0.907.

TABLE I Slopes and correlation coefficients for constant strain rates

Strain
rate (1/s) 0.01 0.05 0.1 0.5 1 Average
Slope 0.381 0.575 0.669 0.823 0.907 0.671
Correlation 0.99495 0.9961 0.9942 0.99702 0.99981 0.99642
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Figure 2 Images of sample deformation in four selected steps at strain rate of 0.1 (1/s), and temperature of 150◦C. Homogenous deformation can be
observed.

Figure 3 The log-log true stress-true strain relations at 170◦C. Points
are the experimental data, and lines are the approximation results of the
least square method.

In order to evaluate the effect of the strain rate ˙ε on the
stressσ , the true stressσ vs true strain rate ˙ε relations at
constant strains ˙ε are plotted in Fig. 4, in which the same
data shown in Fig. 3 are utilized. Again, applying the
least square method to the data under constant strains,
we can get the slopes and the correlation coefficients
of the approximation lines, whose values are shown in
Table II. The measuredσ vs ε̇ relation at a constant
strain can be expressed by following equation:

σ = kε̇m (5)

Fig. 5 shows theσ vs ε relations for the constant
strain rate of 0.1 (1/s) at different temperatures, where

Figure 4 The log-log true stress-true strain rate relations at 170◦C.
Points are the experimental data, and lines are the approximation re-
sults of the least square method.

strain hardening can be observed at all the temperatures.
The least square approximation results are shown in Ta-
ble III. It can be seen that with increasing temperature,
the slope n becomes smaller gradually, and from the
correlation coefficients, it can be also seen that Equa-
tion 4 provides quite good approximation for test data
under a constant strain rate at different temperatures.

4. New model
Based on the above experimental results, efforts were
made to create an accurate and simple material model
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TABLE I I Slopes and correlation coefficients for constant strains

Strain 0.3 0.5 1 1.5 2 2.5 Average
Slope 0.385 0.454 0.544 0.581 0.574 0.608 0.524
Correlation 0.9932 0.99472 0.99868 0.99977 0.99983 0.99999 0.9977

TABLE I I I Slopes and correlation coefficients at different
temperatures

Temperature (◦C) 150 170 190 200 Average
Slope 0.931 0.669 0.392 0.375 0.592
Correlation 0.99926 0.9942 0.99202 0.97126 0.98919

Figure 5 The log-log true stress-true strain relations at different temper-
ature. Points are the experimental data, and lines are the approximation
results of the least square method.

Figure 6 Schematic view of the 3D data distribution at a constant tempe-
rature.

for ABS material valid in all the strain, strain rate and
temperature ranges covered in the experiment.

When we plot all the experimental data shown in
Fig. 3 into (x, y, z) space, withx = log ε, y = log ε̇,
z= logσ , the data constructs a surface which is shown
qualitatively in Fig. 6 and can be approximated by the
following equation:

z= a+ bx+ cy+ dxy (6)

that is:

logσ = logk+ n′ logε +m′ log ε̇ + w logε log ε̇
(7)

Equation 7 describes a bilinear surface, whose char-
acteristic is that the intersection of the surface with a

plane normal to a coordinate axisx or y is a straight
line, which represents the logσ -log ε̇ line in Fig. 4 or
logσ -logε line in Fig. 3. The slopes of lines are differ-
ent from place to place.

Rewriting Equation (7) into an exponential form, we
obtain:

σ = kεn′ ε̇m′+w logε (8)

wheren′ is the slope of the logσ -logε relation at ˙ε = 1,
andm′ is the slope of logσ -log ε̇ relation atε = 1, and
w can be given as:

w = (∂ log σ/∂ logε)ε̇=c − n′

logc
(c 6= 1) (9)

where (∂ logσ/∂ logε)ε̇=c is the slope of the logσ -logε
relation at any constant strain ratec except 1, which is
obtained from the experiment data. Parameterw repre-
sents the variation of the slope.

The strain hardening indexn and strain rate sensi-
tivity index m, in Equations 4 and 5, always change
according to:

n = ∂ logσ

∂ logε

∣∣∣∣
ε̇=const

= n′ + w log ε̇ (10)

m= ∂ logσ

∂ log ε̇

∣∣∣∣
ε=const

= m′ + w logε (11)

Equations 10 and 11 reveal that the strain hardening
indexn is affected by strain rate, while the strain rate
sensitivity indexm is affected by strain.

Following the above procedures, the material param-
eters of ABS material at 170◦C are determined:

n′ = 0.907, m′ = 0.544, w = 0.26,

k = 6.543× 105

All the experimental data at 170◦C can thus be approx-
imated using Equation 8 with the above constants. In
order to validate this approximation, Equation (8) and
the experimental data at constant ˙ε andε are plotted
in Figs 7 and 8. They clearly correspond to each other
quite well. Although the above discussion is made at
constant temperature of 170◦C, the data distribution at
different temperatures basically shows the same ten-
dency. Therefore we may assume that Equation 8 can
be applicable for different temperatures. Thus the sur-
faces illustrated in Fig. 6 for 170◦C, is reconstructed for
different temperatures, as shown in Fig. 9. Here, it is ob-
vious that the constantsk, n′,m′ andw in Equation 8
are functions of temperature, and then we determine
k-T , n′-T , m′-T andw-T by obtaining constant values
at different temperatures using Equations 9, 10 and 11.
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Figure 7 The log-log true stress-true strain relations predicted using
new model. Points are the experimental data, and lines are the predicted
results of the new model.

Figure 8 The log-log true stress-true strain rate relations predicted using
new model. Points are the experimental data, and lines are the predicted
results of the new model.

Figure 9 Schematic view of the 3D data distribution at different tem-
peratures.

k decreases exponentially with an increase in tempera-
ture, which appears to be a linear relation in a log-log
plot as shown in Fig. 10. Relationsn′-T , m′-T andw-T
are shown in Fig. 11, in which,n′ decreases linearly,
while m′ increases linearly with an increase in temper-
ature. These changes indicate that, as the temperature
increases, the strain hardening decreases, and the strain
rate sensitivity increases. The same figure also shows

Figure 10 k-T relation. Points are the experimental data, and line is the
approximation result of the least square method.

Figure 11 n′-T ,m′-T ,w-T relations of new model. Points are the exper-
imental data, and lines are the approximation results of the least square
method.

thatw decreases with an increase in temperature, which
reveals that the variation of the slope decreases with in-
creasing temperature.

Except fork-T , which can be best fitted by an expo-
nential relation, all the variables can be best described
by the linear relations:

k = a1Tb1, n′ = a2+ b2T, m′ = a3+ b3T,

w = a4+ b4T (12)

For the tested temperature range, the coefficients are
a1 = 4.2456× 1025, a2 = 3.3183,a3 = −0.21649,
a4 = 0.89966,b1 = −8.8803,b2 = −0.014049,b3 =
0.0045101, andb4 = −0.00382.

5. Discussion
5.1. Existing models
In order to clarify the improvement achieved using the
above new model, approximations of the experimental
data are also conducted with the two existing models
for comparison.

a) Model 1. First, we examine the performance of the
following well-known non-Newtonian creeping mate-
rial model, which can be also obtained using the new
model withn′ = 0 andw = 0:

σ = kε̇m (13)
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Figure 12 The log-log true stress-true strain relations predicted using
model 1. Points are the experimental data, and lines are the predicted
results of model 1.

Figure 13 The log-log true stress-true strain rate relation predicted using
model 1. Points are the experimental data, and the line is the predicted
results of model 1.

where,k and m are the constants.m is given by the
average value of the slopes shown in Table II, andk
is equal to the stress at ˙ε = 1. However, from Fig. 4,
we know that at ˙ε = 1 the stress values are different at
different strains, thus we simply take the average value
of them, i.e.,k = 8.124× 105.

Substituting the constantsm= 0.671 and k=
8.124× 105 to Equation 13, and plotting it together
with the experimental data, we obtain Figs 12 and 13.
Since the strain hardening is not considered in Equa-
tion 13, in Fig. 12, the lines predicted by Equation 13
are all parallel to the strain axis. In Fig. 13, the predicted
lines become a single line passing through a group of
experimental data.

b) Model 2. The following model has been often used
to combine the effects of strain rate and strain harden-
ing, which can be also obtained using the new model
with w = 0:

σ = kεnε̇m (14)

where k, n and m are all constants, andk is equal
to the stress values whenε= 1 and ε̇= 1, i.e., k =
6.543× 105. n andmare the strain hardening and strain
rate sensitivity indexes, which can be determined by the
values in Tables I and II. Although the index values in

Figure 14 The log-log true stress-true strain relations predicted using
model 2. Points are the experimental data, and lines are the predicted
results of model 2.

Figure 15 The log-log true stress-true strain rate relations predicted us-
ing model 2. Points are the experimental data, and lines are the predicted
results of model 2.

Tables I and II keep changing, using this model, we
have to assume a constant value. Here we take the av-
erage values ofn = 0.671 andm = 0.524. Plotting
Equation 14 together with the experimental data, we
obtain the results as shown in Figs 14 and 15.

Compared with model 1, since strain hardening is
considered in model 2, the prediction of model 2 is
closer to the experimental data. However, since the pre-
dicted lines have a constant slope both in Figs 14 and 15,
this model could not reflect the successive changing of
the slopes of the experimental data. Table I shows that
the slopes change from 0.3–0.9 for the tested strain rate
range, this variation should not be neglected in the ma-
terial model.

In the case of model 2,k-T is the same as that in
model 3 and is given in Fig. 10.m-T andn-T are shown
in Fig. 16. These relations can be modeled as:

k = a1Tb1, n = a2+ b2T, m= a3+ b3T. (15)

where the constants are

a1 = 4.2456× 1025, a2 = 1.8507,

a3 = −0.08735, b1 = −8.88030,

b2 = −0.0071782, and b3 = 0.0038059.
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Figure 16 n-T , m-T relations for model 2. Points are the experimental
data, and lines are the approximation results of the least square method.

A similar material model, which considered the stress
as a function of strain and strain rate, has been proposed
by G’Sell and Jonas [9], based on the uniaxial tensile
test conducted at room temperature for HDPE and PVC.
However, as stated in G’Sellet al. [10], in their model,
the strain hardening coefficient is independent of the
strain rate, and the strain rate sensitivity coefficient is
independent of the strain, which are different from the
model proposed in this paper.

5.2. FEM simulation
The above three models can all be generalized into
3D deformation cases in terms of equivalent stress ¯σ ,
equivalent strain ¯ε, and equivalent strain ratē̇ε, e.g.,
Equation 8 becomes:

σ̄ = kε̄n′ ˙̄εm′+w log ε̄ (16)

whereσ̄ =
√

3/2σ ′i j σ
′
i j , ˙̄ε = √2/3ε̇i j ε̇i j , ε̄ =

∫ t
0

˙̄ε dt

Figure 18 The initial temperature distribution and the temperature distribution when comparison of thickness between models conducted. The
temperature decreases linearly from 160◦C at the middle point to 150◦C at two ends, and the deformation is assumed to occur under a heat
insulation condition due to the high speed of the process.

Figure 17 Schematic view of the simulation model.

The viscoplastic constitutive equation is obtained by
substituting Equation 16 to the following Levy-Mises
flow rule:

σ ′i j =
2σ̄

3˙̄ε
ε̇i j (17)

Implementing all three models into the viscoplastic
FEM code developed by authors, we simulated the
stretching tests, and evaluated the differences in the
final thickness and shape qualitatively. For the details
of FEM formulation refer to [6, 7].

The dimensions of the specimen are 50×30×2 mm,
and one end of the specimen is fixed, while the other
is stretched in the longitudinal direction, with the dis-
placement fixed in the transverse direction at both ends
(Fig. 17). The comparison is conducted when the spec-
imen length becomes three times of its initial length.

The initial temperature distribution is set artificially.
As shown in Fig. 18, the temperature decreases linearly
from 160◦C at the middle point to 150◦C at two ends.
The deformation is assumed to be conducted under a
heat insulation condition due to the high speed process.
Fig. 19 shows the thickness distribution obtained using
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Figure 19 Final thickness distribution obtained using the three models.

the three models. Since the temperature effect is not
considered in model 1, the specimen calculated using
model 1 is simply uniformly stretched. On the other
hand, because the temperature effect is considered in
both model 2 and the new model, strain localization is
observed in the middle part of the specimen, where the
temperature is higher than the surrounding area. How-
ever, the strain localization calculated by model 2 is
more obvious than the new model. This is due to the
fact that in the new model, the slope variation is con-
sidered. Initially, due to the higher temperature at the
middle point the middle area deforms faster than the
surrounding area. As the strain rate and the strain in-
crease in the middle area, both the strain hardening and
the strain rate sensitivity increase according to the new
model, therefore the middle part needs higher stress to
deform. This stress may be even higher than the stress
which is necessary for the surrounding area to be de-
formed. Therefore the deformation of the middle point
is delayed, and the strain localization obtained using
the new model is not as serious as that obtained using
model 2.

6. Conclusions
Tensile material tests have been conducted for the ABS
material under the conditions that thermoforming pro-
cess is performed. Based on the test data, a new model,
which could consider the strain hardening, strain rate
sensitivity, temperature change, and variation in the
hardening index, is proposed. It is proved that the re-
sults of this model are in excellent agreement with the
uniaxial tensile test result. Compared with the existing

material models, the improvement in this new model is
clarified.

Acknowledgements
We would like to express our sincere thanks to Denki
Kagaku Kogyo Co. Ltd. for providing the test material,
and to Mr. H. Kubo for help with some of the experi-
ments.

References
1. H. F. N I E D, C. A . T A Y L O R and H. G. D E L O R E N Z I,

J. Polym. Eng. Sci.30 (1990) 1314.
2. W. N. S O N G, F. A . M I R Z A and J. V L A C H O P O U L O S,

J. Rheol35 (1991) 93.
3. A . R O D R I G U E Z-V I L L A , J. F. A G A S S A N T and

M . B E L L E T, Proceedings of the Numerical Methods in In-
dustrial Forming Processes, Numiform’95, Ithaca, N.Y., USA (A.
A. Balkema, Rotterdam, 1995) p. 1053.

4. F. M . S C H M I D T, J. F. A G A S S A N T, M . B E L L E T and
L . D E S O U T T E R, J. Non-Newtonian Fluid Mech.64 (1996) 19.

5. M . H. V A N T A L , B. M O N A S S E andM . B E L L E T, Proceed-
ings of the Numerical Methods in Industrial Forming Processes, Nu-
miform’95, Ithaca, N.Y., USA, (A. A. Balkema, Rotterdam, 1995)
p. 1089.

6. S. W A N G, A . M A K I N O U C H I andT. N A K A G A W A , JSPP
Symposium96, (Japan Society of Plastic Processing, 1996) p. 149
(In Japanese).

7. Idem., Advances in Polymer Technology17 (1998) 189.
8. J. M E I S S N E R andJ. H O S E T T L E R, J. Rheol. Acta33 (1994)

1.
9. C. G’ S E L L andJ. J. J O N A S, J. Mater. Sci.14 (1979) 583.

10. C. G’ S E L L, N. A . A L Y -H E L A L andJ. J. J O N A S, ibid. 18
(1983) 1731.

Received 17 June 1998
and accepted 5 May 1999

5878


